Role of sdhA and pfkA and catabolism of reduced carbon during colonization of cucumber roots by Enterobacter cloacae.

نویسندگان

  • Shengyi Liu
  • Xiaojia Hu
  • Scott M Lohrke
  • C Jaycn Baker
  • Jeffrey S Buyer
  • Jorge T de Souza
  • Daniel P Roberts
چکیده

We have been using a mutational approach to determine how plant-beneficial bacteria such as Enterobacter cloacae 501R3 obtain carbon and energy for colonization of subterranean portions of cucumber and other plants. Reduced carbon detected in cucumber root exudate consisted of 73.3 % amino acids, 22.2 % organic acids and 4.4 % carbohydrate. Ent. cloacae M2, a mini-Tn5 Km transposon mutant of strain 501R3, was severely reduced in in vitro growth relative to strain 501R3 on the mixture of amino acids and organic acids detected in cucumber root exudate when these compounds were supplied as the sole source of carbon and energy, but was similar in growth on the mixture of carbohydrates detected in this exudate. Molecular and biochemical characterization of Ent. cloacae M2 indicated that the transposon was inserted in sdhA, which encodes a subunit of succinate dehydrogenase. Ent. cloacae A-11, a mutant of strain 501R3 with a mini-Tn5 Km insertion in pfkA, was severely reduced in in vitro growth relative to strain 501R3 on the mixture of carbohydrates detected in cucumber root exudate, but similar in growth on the mixture of amino acids and organic acids. When strains A-11 and M2 were coapplied with strain 501R3 to cucumber seeds above carrying capacity in competitive root colonization assays, populations of strains A-11 and M2 were roughly one order of magnitude lower than those of strain 501R3 in cucumber rhizosphere, while populations of strains A-11 and M2 were similar to one other when coapplied to cucumber seeds. When Ent. cloacae strains were coapplied to cucumber seeds below carrying capacity, populations of A-11 and M2 were roughly two to three orders of magnitude lower than those of 501R3 in cucumber rhizosphere, and populations of A-11 were significantly lower than those of M2 when these two strains were coapplied to cucumber seed. The experiments reported here indicate an important role for pfkA and sdhA and the catabolism of carbohydrates, and of amino acids and organic acids, respectively, in the colonization of cucumber roots by Ent. cloacae. The results reported here also indicate that catabolism of carbohydrates by this bacterium is more important than catabolism of amino acids and organic acids at lower population densities, despite the much higher relative quantities of amino acids and organic acids detected in cucumber root exudate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of pfkA and general carbohydrate catabolism in seed colonization by Enterobacter cloacae.

Enterobacter cloacae A-11 is a transposon mutant of strain 501R3 that was deficient in cucumber spermosphere colonization and in the utilization of certain carbohydrates (D. P. Roberts, C. J. Sheets, and J. S. Hartung, Can. J. Microbiol. 38:1128-1134, 1992). In vitro growth of strain A-11 was reduced or deficient on most carbohydrates that supported growth of strain 501R3 but was unaffected on ...

متن کامل

Importance of pfkA for rapid growth of Enterobacter cloacae during colonization of crop seeds.

Enterobacter cloacae A-11 is a prototrophic, glycolytic mutant of strain 501R3 with a single transposon insertion in pfkA. The populations of strain A-11 on cucumber and radish seeds were smaller than the populations of strain 501R3 in natural soil, but the populations of these two strains on pea, soybean, sunflower, and sweet corn seeds were similar (D. P. Roberts, P. D. Dery, I. Yucel, J. Buy...

متن کامل

Pyruvate dehydrogenase activity is important for colonization of seeds and roots by Enterobacter cloacae

Enterobacter cloacae is a plant-beneficial bacterium that shows promise for suppression of damping-off of cucumber and other crops caused by Pythium ultimum. We have been using a mutational approach to determine the E. cloacae genes important in bacterial–plant and bacterial–pathogen interactions in the spermosphere and rhizosphere. E. cloacae M43 is a transposon mutant of E. cloacae 501R3 that...

متن کامل

Mutation of rpiA in Enterobacter cloacae decreases seed and root colonization and biocontrol of damping-off caused by Pythium ultimum on cucumber.

Strains of Enterobacter cloacae show promise as biocontrol agents for Pythium ultimum-induced damping-off on cucumber and other crops. E. cloacae A145 is a mini-Tn5 Km transposon mutant of strain 501R3 that was significantly reduced in suppression of damping-off on cucumber caused by P. ultimum. Strain A145 was deficient in colonization of cucumber, sunflower, and wheat seeds and significantly ...

متن کامل

Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres.

Differential protection of plants by Enterobacter cloacae was studied by investigating early sensing and response behavior of Pythium ultimum sporangia toward seeds in the presence or absence of E. cloacae. Ten percent of P. ultimum sporangia were activated within the first 30 min of exposure to cucumber seeds. In contrast, 44% of the sporangia were activated as early as 15 min after exposure t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 153 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2007